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Abstract
In this paper we consider a quantized single-mode field interacting with two
two-level atoms. For the radiation field of this system we investigate the
occurrence of the revival-collapse phenomenon in the evolution of the Wigner
(W) function at the phase-space origin and of the quadrature squeezing. We
show under certain conditions that the higher-order quadrature squeezing and
the W function can provide complete information on the total atomic inversion.
Moreover, we develop the notion of the geometric atomic inversion and show
that it can be connected by the W function and the quadrature squeezing.

PACS numbers: 42.50.Dv, 42.60.Gd

1. Introduction

One of the most important models in quantum optics is the Jaynes–Cummings model (JCM) [1],
which represents the interaction between a two-level atom and one quantized electromagnetic
mode. The JCM has been experimentally realized in the framework of the Rydberg atom
[2] and in the strong coupling regime [3]. In spite of its simplicity it provides a number of
interesting phenomena such as the revival-collapse phenomenon (RCP) [4], sub-Poissonian
photon statistics and squeezing [5]. The RCP is the most important one since it reflects the
granular structure of the initial field distribution. At the fundamental level, the RCP reveals
atom–field entanglement and it provides more information on the nonclassicality of the JCM.
Also the revival results from the erasure of the atomic imprint onto the field and from the
unitary deconstruction of the atom–field entanglement [6]. The generalization of the JCM
either to many modes interacting with a single atom [7] or many atoms interacting with a
single mode, e.g. [8], has been reported. Two two-level atoms interacting with a single-mode
cavity field (TJCM) has taken much attention in the literature as a result of the progress in the
quantum information [9]. More illustratively, the quantum entanglement criteria are basically
given for two qubits, e.g. concurrence [10] and Peres–Horodecki measure [11].
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Generally, for the TJCM there are different types of the atomic inversion, namely, single-
atom inversions and total atomic inversion. The occurrence of the RCP in the evolution of
these inversions has been investigated for the single-photon TJCM [12–14] as well as the
multiphoton TJCM [15, 16]. Basically, the behaviour of the atomic inversions of the TJCM
is completely different from that of the JCM since those of the former include a sum of
harmonic functions, (i.e. cosines or sines), which oscillate at different frequencies providing
RCP different from that of the latter. The RCP of the TJCM is quite sensitive to the ratio of the
two transition dipole moments and to the photon statistics of the field [13]. In the framework
of the two-atom Tavis–Cummings model the connection between the behaviour of the total
atomic inversion, i.e. RCP, and the entanglement has been discussed [17].

Recently, we have shown that for the JCM there are relationships between the atomic
inversion and each of the Wigner (W) function [7] and the quadrature squeezing [18–23].
Precisely, for the multimode multiphoton JCM the evolution of the W function at the phase-
space origin—under certain conditions—provides complete information on the corresponding
atomic inversion. Such behaviour is insensitive of the Kerr nonlinearity, the Stark shift effect,
the types of the initial-field states and the atomic motion. On the other hand, it has been
shown that for specific types of the initial-field states the quadrature squeezing can naturally
exhibit the RCP as that of the corresponding atomic inversion. Furthermore, the evolution of
the normal [18] and of the higher-order [19] squeezing of the three-photon JCM (with the field
initially in the coherent state) can reflect the RCP involved in the 〈σ̂ z(T )〉 of the standard,
i.e. single-photon, JCM. Such types of relations are valid for any field whose photon-number
distribution exhibits a smooth envelope, e.g. binomial state [23]. Apart from the standard JCM
similar relations have been obtained for the intensity-dependent JCM [20], the two-photon
JCM [21] and the two-mode JCM [22]. In the present paper, we study the occurrence of such
a phenomenon for the cavity field of the TJCM. In other words, for the TJCM we study for the
radiation field the possibility of involving the evolution of the W function at the phase-space
origin and the quadrature squeezing information on the total atomic inversion. Needless to
say that the treatment for the TJCM is more complicated than that for the single-atom JCM
[18, 19]. In spite of this fact we obtain many interesting results. For instance, for this system
we show that for particular types of initial states the quadrature squeezing can naturally involve
complete information on the total atomic inversion. Furthermore, we show numerically that the
information about the total atomic inversion of the single-photon and two-photon TJCM can
be obtained from the evolution of the Nth-order quadrature squeezing of the three-photon and
four-photon TJCM, respectively. This is quite similar to the single-atom JCM [19]. Moreover,
we develop the notion of the geometric atomic inversion and prove that it can be obtained from
the evolution of the W function as well as the quadrature squeezing. Also we show that under
certain conditions there is a relationship between the total atomic inversion and W function.
Actually, these results are interesting and motivated by two facts. (i)The TJCM is an important
system since—beside the reasons given above—it is a subject of experiment. For instance, the
analysis of a two-atom double-slit experiment based on environment-induced measurements
is discussed in [24]. Furthermore, the generation of the entangled states from two two-level
atoms inside a leakage optical cavity has been given in [25]. (ii) The results of the present
paper are in the availability of the present technology. More illustratively, these results draw
the attention to that the RCP of the TJCM can be measured by homodyne detectors [26],
photon counting experiment [27], trapped ion technique [28, 29] and homodyne tomography
[30, 31]. Some of these techniques have been already applied to the JCM. For instance, in
the cavity QED, the homodyne detector technique has been applied to the single Rydberg
atom and one-photon field for studying the field phase evolution of the regular JCM [32].
Quite recently the Rabi oscillations revival induced by time reversal has been observed using a
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technique similar to that of the NMR refocusing [6]. Finally, for detecting the RCP produced
by the TJCM the scheme given in [25] is more relevant: the system of two two-level atoms
are placed inside a cavity with distance inbetween is much larger than the optical wavelength,
and therefore dipole–dipole interaction can be neglected. The cavity mode is assumed to be
resonant with the atomic transition frequency. The photons leaking from the cavity can be
detected by a homodyne detector.

We perform such study in the following order: in section 2 we give the basic relations
and equations for the system under consideration. Also we develop the definition of the
geometric atomic inversion. In section 3 we investigate the evolution of the atomic inversion,
the geometric atomic inversion and the W function at the phase-space origin, i.e. W(0, T ). In
sections 4 and 5 we discuss the occurrence of the RCP in the quadrature squeezing naturally
and numerically, respectively. In section 6 we summarize the main results. The appendix is
given for deriving the re-scaled squeezing factors.

2. Basic equations and relations

In this section we give the basic relations and equations, which will be used in the paper.
More precisely, we give the Hamiltonian of the system and derive its dynamical wavefunction.
Also we evaluate the different forms of the atomic inversions as well as the W function at the
phase-space origin. Also we give the definition of the Nth-order squeezing factors.

We start with developing the �-photon coherent states [33–35] as

|α〉 =
∞∑

n=0

Cn|ln〉, (1)

where Cn = exp
(− 1

2 |α|2) αn√
n!

and l is a parameter, will be specified in the text. State (1) can
cover a wide range of well-known states, i.e. when l = 1 and 2 it gives the coherent state and
the two-photon coherent state, respectively.

In the rotating wave approximation the two-atom multiphoton single-mode Hamiltonian
[12–16] is

Ĥ

h̄
= Ĥ 0 + Ĥ I ,

(2)

Ĥ 0 = ωâ†â + ωa

(
σ̂ z

1 + σ̂ z
2

)
, Ĥ I =

2∑
j=1

λj

(
âkσ̂ +

j + â†kσ̂−
j

)
,

where Ĥ 0 and Ĥ I are the free and interaction parts of the Hamiltonian, σ̂±
j and σ̂ z

j are the
Pauli spin operators of the j th atom; â (â†) is the annihilation (creation) operator denoting the
cavity mode, ω and ωa are the frequencies of the cavity mode and the atomic systems (we
consider that the two atoms have the same frequency), λj is the atom–field coupling constant
of the j th atom and k is the transition parameter. Throughout the investigation we assume
that ωa = 2kω, (i.e. the exact resonance case) and the two atoms and field are initially in the
excited atomic states |+, +〉 and the �-photon coherent state, respectively. The atomic ground
state is denoted by |−〉. From these facts the dynamical state of the whole system can be
expressed in the following form:

|�(T )〉 =
∞∑

n=0

Cn [X1(T , n, k)|+, +, ln〉 + X2(T , n, k)|+,−, ln + k〉

+ X3(T , n, k)|−, +, ln + k〉 + X4(T , n, k)|−,−, ln + 2k〉] . (3)
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In (3), without loss of generality, we have used the scaled time T = λ1t instead of t. The explicit
forms of the dynamical coefficients Xj(T , n, k) can be obtained by solving the Schrödinger
equation

i

h̄

∂

∂T
|�(T )〉 = Ĥ I |�(T )〉. (4)

From (3) and (4) we obtain a system of four first-order differential equations, which can be
easily solved as

X1(T , n, k) = 1

2β

[
(ε2 − ε1 + β) cos

(
θ(1)
n T

)
+ (ε1 − ε2 + β) cos

(
θ(2)
n T

)]
,

X2(T , n, k) =
−im

√
(ln+k)!
(ln)!

2β

[
D+

sin
(
θ(1)
n T

)
θ

(1)
n

− D−
sin

(
θ(2)
n T

)
θ

(2)
n

]
,

(5)

X3(T , n, k) =
−i

√
(ln+k)!
(ln)!

2β

[
d+

sin
(
θ(1)
n T

)
θ

(1)
n

− d−
sin

(
θ(2)
n T

)
θ

(2)
n

]
,

X4(T , n, k) =
2m

√
(ln+2k)!

(ln)!

β

[
cos

(
θ(1)
n T

) − cos
(
θ(2)
n T

)]
,

where

ε1 = (1 + m2)
(ln + 2k)!

(ln + k)!
, ε2 = (1 + m2)

(ln + k)!

(ln)!
,

β =
√

(1 + m2)2

[
(ln + 2k)!

(ln + k)!
− (ln + k)!

(ln)!

]2

+ 16m2
(ln + 2k)!

(ln)!
,

θ (1)
n = 1√

2

√
ε2 + ε1 + β, θ(2)

n = − 1√
2

√
ε2 + ε1 − β, (6)

D± = (1 + m2)

[
(ln + k)!

(ln)!
− (ln + 2k)!

(ln + k)!

]
+ 4

(ln + 2k)!

(ln + k)!
± β,

d± = (1 + m2)

[
(ln + k)!

(ln)!
− (ln + 2k)!

(ln + k)!

]
+ 4m2 (ln + 2k)!

(ln + k)!
± β

and m = λ2/λ1. Throughout the paper the values m = 1 and m �= 1 denote the symmetric
and asymmetric cases, respectively. For the symmetric case the coefficients Xj(T , n, k) take
the forms:

X1(T , n, k) = (ln)!(ln + k)!

[(ln + k)!]2 + (ln)!(ln + 2k)!

[
(ln + k)!

(ln)!
cos(T �n) +

(ln + 2k)!

(ln + k)!

]
,

X2(T , n, k) = X3(T , n, k) = −i

√
(ln + k)!

(ln)!

sin(T �n)

�n

, (7)

X4(T , n, k) = (ln + k)!
√

(ln)!(ln + 2k)!

[(ln + k)!]2 + (ln)!(ln + 2k)!
[cos(T �n) − 1] ,

where �n =
√

2 (ln+k)!
(ln)! + 2 (ln+2k)!

(ln+k)! .

As we deal with the two atoms system we have different forms of the atomic inversions,
namely, the first atom

〈
σ z

1 (T )
〉
, the second atom

〈
σ z

2 (T )
〉

and the total atomic inversions〈
σ z

T (T )
〉 = 1

2

[〈
σ z

1 (T )
〉
+

〈
σ z

2 (T )
〉
. Additionally, we develop the notion of the geometric atomic
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inversion as
〈
σ z

1 (T )σ z
2 (T )

〉
. The origin of using ‘geometric’ is in the similarity between this

quantity and the geometric mean value, which for two c-numbers c1, c2 is
√

c1c2. The forms
of these atomic inversions related to state (3) can be expressed as

〈
σ z

1 (T )
〉 =

∞∑
n=0

|Cn|2[|X1(T , n, k)|2 + |X2(T , n, k)|2 − |X3(T , n, k)|2 − |X4(T , n, k)|2],

〈
σ z

2 (T )
〉 =

∞∑
n=0

|Cn|2[|X1(T , n, k)|2 − |X2(T , n, k)|2 + |X3(T , n, k)|2 − |X4(T , n, k)|2],

(8)〈
σ z

T (T )
〉 =

∞∑
n=0

|Cn|2[|X1(T , n, k)|2 − |X4(T , n, k)|2],

〈
σ z

1 (T )σ z
2 (T )

〉 =
∞∑

n=0

|Cn|2[|X1(T , n, k)|2 − |X2(T , n, k)|2 − |X3(T , n, k)|2 + |X4(T , n, k)|2].

One can easily realize for the symmetric case that
〈
σ z

1 (T )
〉 = 〈

σ z
2 (T )

〉 = 〈
σ z

T (T )
〉
.

On the other hand, the W function is an important quantity in quantum optics since it can
be experimentally measured by several means, i.e. photon counting experiment [27], using
a simple experiment similar to that used in the cavity QED and trapped ions [28, 29] and
tomographic reconstruction from data obtained in homodyne measurements [30, 31]. Most
of these techniques have been subjected to measure the phase-space origin of the W function
[7], which can be obtained through the relation:

W(0, T ) = Tr[ρ̂(T ) exp(iπâ†â)], (9)

where ρ̂(T ) is the density matrix of the system under consideration. In (9) we have dropped
the pre-factor 1

π
from the definition of the W function since it does not affect the overall

dynamical behaviour of the W(0, T ). It is evident from (9) that the main contribution in the
W(0, T ) is coming from the diagonal terms of the density matrix of the system. This situation
is similar to that of the atomic inversions (cf (8)). This indicates that there is a relationship
between W(0, T ) and the atomic inversions. This issue will be discussed in the following
section. Now from (3) and (9) we obtain

W(0, T ) =
∞∑

n=0

|Cn|2(−1)ln[|X1(T , n, k)|2 + (−1)k|X2(T , n, k)|2

+ (−1)k|X3(T , n, k)|2 + |X4(T , n, k)|2]. (10)

We close this section by defining the Nth-order quadrature squeezing operators as
X̂N = 1

2 (âN + â†N), Ŷ N = 1
2i

(âN − â†N), where N is a positive integer. The squeezing
factors associated with X̂N and Ŷ N can be, respectively, expressed as [36]:

FN(T ) = 〈â†N(T )âN(T )〉 + Re〈â2N(T )〉 − 2(Re〈âN (T )〉)2,

SN(T ) = 〈â†N(T )âN(T )〉 − Re〈â2N(T )〉 − 2(Im〈âN (T )〉)2.
(11)

We use the present results in the following sections to find a relation between the different
types of the atomic inversions and W(0, T ) as well as between the total atomic inversion and
the quadrature squeezing.

3. Atomic inversion, geometric atomic inversion and the Wigner function

In this section we investigate the occurrence of the RCP in the evolution of the atomic
inversions, geometric atomic inversion and the W(0, T ). Also we study the relations between
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these quantities. Furthermore, performing such analysis is essential for the following sections,
in which we deduce the relationship between the total atomic inversion and the quadrature
squeezing.

First of all for the TJCM the quantities given in (8) can exhibit RCP only for k = 1, 2,
provided that the intensity of the initial field is very strong, i.e. n̄ = 〈n̂(0)〉 = l|α|2 � 1.
Throughout the paper we focus the attention on these cases. We start the investigation with
the symmetric case when (k, l) = (1, 1). In this case the initial photon-number distribution
is Poissonian with sharp peak and hence the terms contributing effectively to the summations
in (8) are those close to n � n̄. Thus the terms with the form (1 + η′/n), where η′ is a finite
arbitrary number, tend to unity. This technique is called the strong-intensity regime (SIR).
Therefore, from (8) the single-atom atomic inversion and the geometric atomic inversion,
respectively, can be modified as

〈
σ z

1 (T )
〉 =

∞∑
n=0

|Cn|2 cos
(
T

√
2(2n + 3)

)
, (12)

〈
σ z

1 (T )σ z
2 (T )

〉 = 1

2
+

1

2

∞∑
n=0

|Cn|2 cos
(
2T

√
2(2n + 3)

)
. (13)

It is evident that (13) is always non-negative since it is shifted from the origin by 0.5.
Comparison between (12) and (13) shows that they can exhibit RCP but the revival patterns
(revival amplitudes) of the latter are two times (half) greater than those of the former. From
(12) and (13) one can deduce the connection between the atomic inversion and the geometric
atomic inversion as〈

σ z
1 (T )σ z

2 (T )
〉 = 1

2

〈
σ z

1 (2T )
〉
+ 1

2 . (14)

We have numerically checked the validity of (14) through the exact forms (8). For reasons
that will be clear shortly, we deduce the asymptotic form for (12) by means of the SIR. In this
case the square root in the argument of cosine in (12) can be modified as

√
2(2n + 3) = 2

√(
n̄ +

3

2

) [
1 +

n − n̄(
n̄ + 3

2

)
] 1

2

,

� η1 + η2n, (15)

where

η1 = n̄ + 3√
n̄ + 3

2

, η2 = 1√
n̄ + 3

2

. (16)

The transition from the first line to the second line in (15) is done via Taylor’s expansion with
neglecting the higher-order terms, which are relatively small. On substituting (15) into (12)
and after minor algebra we arrive at〈

σ z
1 (T )

〉 � exp

[
−2|α|2 sin2

(
T

2η2

)]
cos[η1T + |α|2 sin2(T η2)]. (17)

In (17) the revival patterns occur when the exponential term has a maximum contribution,
i.e. the revival time Tr = πm′√4n̄ + 6, where m′ is integer. This form of Tr can be obtained
also by estimating the time that neighbour terms in the sum are in phase. Similarly one can
prove for k = 2 that Tr = π , which is typical with that of the single-atom JCM [5]. Also for
(13) one can prove that the revival time is Tr = 0.5πm′√4n̄ + 6, i.e. it is one-half of (17).
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(a) (b)

(c)

Figure 1. The different types of atomic inversions against the scaled time T for α = 9.
(a) for (k, m) = (1, 1)

〈
σz

1 (T )
〉

(curve A) and
〈
σz

1 (T )σ z
2 (T )

〉
+ 1 (curve B). (b) for (k, m) =

(1, 0.5)
〈
σz

1 (T )
〉

(curve A),
〈
σz

2 (T )
〉

+ 2 (curve B),
〈
σz

T (T )
〉

+ 4 (curve C) and
〈
σz

1 (T )σ z
2 (T )

〉
+ 6

(curve D). (c) the same as (b) but for k = 2.

These facts can be realized from figure 1, which are plotted for the exact forms of (8), for given
values of the interaction parameters. It is obvious from figure 1(a) that for the symmetric case
the behaviour is in a complete agreement with the analytical investigation given above. We
turn the attention to the asymmetric case. From figure 1(b) the revival patterns occurring in
the

〈
σ z

1 (T )
〉
are two times greater than those in the

〈
σ z

2 (T )
〉
(see curves A and B in figure 1(b)).

This is related to the strengths of the interaction between the field and the two atoms, where the
first-atom–field interaction is two times stronger than that of the second-atom–field interaction.
Also we have checked the validity of this fact for m = 0.25. Now one can understand the
asymmetry in the evolution of the

〈
σ z

T (T )
〉
(see curve C in figure 1(b)), where it represents the

sum of curves A and B in the same figure. To be more specific, when the revival patterns in
curves A and B occur in the same interaction time domain, an amplified revival pattern appears
in

〈
σ z

T (T )
〉
. Curve D in figure 1(b) shows that

〈
σ z

1 (T )σ z
2 (T )

〉
exhibits RCP which is different

from the other types. The remarks quoted to figure 1(b) are established for figure 1(c) of the
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Figure 2. The evolution of the W function at the phase-space origin when (k, l, α) = (1, 1, 9) for
W(0, τ ) (curve A for m = 1) and W(0, T ) + 1 (curve B for m = 0.5).

k = 2; however, for the latter the revival patterns are compact and systematic. Additionally,
curve A in figure 1(c) is typical to that of the

〈
σ z

T (T )
〉

for the symmetric case.
Now we draw the attention to the W(0, T ). From (10) one can easily realize that when

k is even and l is even (odd) we obtain W(0, T ) = 1 (W(0, T ) = −1). This indicates that
for these specific values of l and k the W(0, T ) is localized. Moreover, the evolution of the
system with the initial odd parity states, e.g. odd coherent states, exhibits always nonclassical
effects. On the other hand, when k is odd and l is even the expressions (8) and (10) lead to

W(0, T ) = 〈
σ z

1 (T )σ z
2 (T )

〉
. (18)

Expression (18) indicates that for these particular values of k and l one can obtain information
on the geometric atomic inversion of the TJCM by measuring the W function at the phase-
space origin. As the main attention in the literature has been devoted to the TJCM when
m = k = l = 1 we shed the light on the W(0, T ) of this case in a greater details. For this case
the asymptotic form of the W(0, T ) (cf (10)) can be derived similarly as (17):

W(0, T ) = exp

[
−2|α|2 cos2

(
T

η2

)]
cos[2η1T − |α|2 sin2(2T η2)]. (19)

There is a kind of similarity between (17) and (19). From (19) the revival patterns can occur
in the W(0, T ) when Tr = h′π

2 η2 where h′ is odd integer. This indicates that the revival
patterns occurring in the W(0, T ) are two times greater than those in

〈
σ z

1 (T )
〉

(cf (17)). Thus
when T → 1

2 (τ + πη2) in (10) for m = 1, the W(0, τ ) gives a complete information on the〈
σ z

1 (T )
〉
. This information is shown in figure 2 for given values of the interaction parameters.

Comparison between curves A in figure 1(a) and figure 2 demonstrates our conclusion. Also
curve B, which is given for the W(0, T ) of the asymmetric case, exhibits asymmetric RCP;
however, it is different from those exhibited in the

〈
σ z

T (T )
〉

and the
〈
σ z

1 (T )σ z
2 (T )

〉
(compare

this curve with curves C and D in figure 1(b)).

4. Natural RCP in the quadrature squeezing

In this section for the TJCM we study the possibility of involving the quadrature squeezing
information on the

〈
σ z

T (T )
〉
. This approach is based on the fact: Ĥ 0 is a constant of motion, i.e.

〈â†â〉 and
〈
σ z

T (T )
〉

can carry information on each others. For the sake of generality we study
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Figure 3. The total atomic inversion given by (23) (curve A for N = 4) and (8) (curve B) against
the scaled time T for (α, l, k, m) = (9, 3, 1, 0.5). Curve B is shifted by 2.

the Nth-order squeezing. It is worth reminding that â†N âN +σ z
T (T ) is not a constant of motion;

however, we show analytically and numerically that 〈â†N(T )âN(T )〉 can give information on
the

〈
σ z

T (T )
〉
. This occurs only for initial states which verify the condition 〈âs ′

(T )〉 = 0 for all
values of s ′. Assume that the field is initially prepared in one of these states, then (11) reduces
to

FN(T ) = SN(T ) = 〈â†N(T )âN(T )〉, (20)

where the expectation value 〈â†N(T )âN(T )〉 can be evaluated as

〈â†N(T )âN(T )〉 =
∞∑

n=0

|Cn|2
{

(ln)!

(ln − N)!
|X1(T , n, k)|2 +

(ln + 2k)!

(ln + 2k − N)!
|X4(T , n, k)|2

+
(ln + k)!

(ln + k − N)!
[|X2(T , n, k)|2 + |X3(T , n, k)|2]

}
. (21)

As a result of the complexity of the asymmetric case we restrict the analysis to the symmetric
case, for which we obtain a general formula connecting the total atomic inversion to the
Nth-order quadrature squeezing. Eventually we apply this formula to the asymmetric case. In
doing so, we assume that the SIR is applicable and N is finite. For k = 1 the expression (21)
can be rewritten as

〈â†N(T )âN(T )〉 = 〈â†N(0)âN (0)〉 + N〈â†N−1(0)âN−1(0)〉

−N

∞∑
n=0

|Cn|2 (ln)!

(ln + 1 − N)!
cos

(
T

√
2(2ln + 3)

)
+

1

4
N(N − 1)

×
∞∑

n=0

|Cn|2 (ln)!

(ln + 1 − N)!

{
1

2
cos

(
2T

√
2(2ln + 3)

)

+
3

2
− 2 cos

(
T

√
2(2ln + 3)

)}
. (22)

In the last two lines of (22), the amplitude of the first cosine is four times smaller than that
of the second cosine. In other words, the contribution of the first cosine is relatively small
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compared to the second one and can be considered zero. This approximation is rigorous at
this stage; however, it does not provide much effect on the last formula, which will be in a
normalized form. Thus after minor algebra the

〈
σ z

T (T )
〉
can be obtained from (22) through the

relation〈
σ z

T (T )
〉

= 〈â†N(0)âN (0)〉 + N〈â†N−1(0)âN−1(0)〉 + 3
8N(N − 1)〈â†N−2(0)âN−2(0)〉 − SN(T )

N〈â†N−1(0)âN−1(0)〉 + 1
2N(N − 1)〈â†N−2(0)âN−2(0)〉 .

(23)

Actually, we found that the expression (23) works well for the symmetric and asymmetric
cases. In figure 3 we depict

〈
σ z

T (T )
〉

for the asymmetric case of the fourth-order squeezing
given by (23) (curve A). Also for the sake of comparison we plot the

〈
σ z

T (T )
〉

given by (8)
(curve B) for the same values of the interaction parameters. Comparison between the two
curves is instructive and demonstrate our conclusion. On the other hand, there is a difficulty
in deriving general formula for the case k = 2. Thus we provide the expression related to
N = 2, i.e. the amplitude-squared squeezing, as

〈
σ z

T (T )
〉 = 〈â†2(0)â2(0)〉 + 4〈â†(0)â(0)〉 + 5 − S2(T )

4〈â†(0)â(0)〉 + 6
. (24)

It is worth mentioning that the relation, which connects between
〈
σ z

T (T )
〉
and normal squeezing

for k = 2, is easy to be obtained. Moreover, we have numerically checked the validity of the
formula (24).

5. Numerical RCP in the quadrature squeezing

In this section for the TJCM with k > 2 and the field initially in the coherent state we drive the
Nth-order re-scaled squeezing factors, which can give information on the

〈
σ z

T (T )
〉
k=1 and on

the
〈
σ z

T (T )
〉
k=2. More illustratively, we find the values of the transition parameter k for which

the squeezing factors reduce to the
〈
σ z

T (T )
〉
k=1 and

〈
σ z

T (T )
〉
k=2. As we did in the previous

section we derive the re-scaled squeezing factors for the symmetric case and hence apply them
to the asymmetric one. It is obvious for real α that Im〈âN (T )〉 � 0. Thus the RCP (if it exists)
can occur only in the SN(T ) (cf (11)). Furthermore, when k > 2 the quantity 〈â†N(T )âN(T )〉
exhibits chaotic behaviour and hence we can use 〈â†N(T )âN(T )〉 � 〈â†N(0)âN (0)〉. From this
discussion one can easily realize that 〈â2N(T )〉 is responsible for the occurrence of the RCP
in the SN(T ). Therefore, we compare the expression of the 〈â2N(T )〉 to that of the

〈
σ z

T (T )
〉
k=1

and
〈
σ z

T (T )
〉
k=2 (see the appendix). In the framework of the SIR and from the information

given in the appendix the Nth-order re-scaled squeezing factors are

QN(T ) = n̄N − 2SN(bT )

n̄N
, (25)

where

b =




1

3N
,

〈
σ z

T (T )
〉
k=1,

1

4N
,

〈
σ z

T (T )
〉
k=2.

(26)

As we have shown in the appendix that the quadrature squeezing can exhibit RCP similar to
that of the

〈
σ z

T (T )
〉
k=1 and

〈
σ z

T (T )
〉
k=2 when k = 3 and k = 4, respectively. Surprisingly, these
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(a) (b)

Figure 4. The re-scaled squeezing factor Q1(T ) against the scaled time T when (α, l, N) =
(9, 1, 1) for k = 3 (a) and 4 (b). Curves B and A are given for m = 1 and 0.5, respectively.

results are similar to those of the single-atom JCM [18–21]; however, here the situation is
rather complicated.

Now we draw the attention to the asymmetric case. From the information given above
one could expect that the behaviour of the asymmetric case will be quite similar to that of
the symmetric case; however, the difficulty is to find the exact values of the parameter b.
This problem can be numerically solved. Information on the re-scaled squeezing factors for
the symmetric and asymmetric cases is shown in figure 4 for given values of the interaction
parameters. Curves A in figures 4(a) and (b) belong to the asymmetric case, for which
we have used b = 0.46 and 0.33, respectively. Comparison between curves B in figure 4
and the corresponding curves A in figures 1(a) and (c) shows that the formula (25) gives
perfect information on the total atomic inversions of the symmetric case. Nevertheless, for the
asymmetric case there are agreement and disagreement (compare curves A in figure 4 with the
corresponding curves C in figure 1). For instance, there is a good agreement in the locations
of the revival patterns in the interaction time domain; however, there is disagreement in the
shapes of these patterns. Also one can note that these curves are shifted from zeros. Also we
have checked (25) for N = 2 and arrived at the same conclusion.

We conclude this section by the following remark: information on the geometric atomic
inversion can be obtained from the squeezing factors. This is quite obvious from the discussion
given in section 3. Without much effort one can obtain the Nth-order squeezing factors, which
give a complete information on the geometric atomic inversions for m = 1 as

Q′
N(T ) = n̄N − SN(b′T )

n̄N
, (27)

where

b′ =




2

3N
,

〈
σ z

1 (T )σ z
2 (T )

〉
k=1,

1

2N
,

〈
σ z

1 (T )σ z
2 (T )

〉
k=2.

(28)

We have numerically checked the validity of (27).
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6. Conclusion

In this paper we have investigated the system of two two-level atoms interacting with
multiphoton single-mode field. The two atoms and the field are initially prepared in the excited
atomic states and the �-photon coherent state, respectively. The attention has been focused on
the occurrence of the RCP in the evolution of the W(0, T ) and the quadrature squeezing and
how these quantities can be connected by the corresponding atomic inversion. We have treated
two cases, namely, symmetric and asymmetric based on the relation between the atom–field
coupling constants. For this system we have developed the notion of the geometric atomic
inversion and showed that it can be obtained from the W(0, T ) and the quadrature squeezing.
Also we have shown under certain conditions that there is a relationship between the total
atomic inversion and W(0, T ). We have proved for particular types of the initial states that
the Nth-order quadrature squeezing can naturally involve information on the total atomic
inversion. Also we have numerically shown that

〈
σ z

T (T )
〉
k=1

( 〈
σ z

T (T )
〉
k=2

)
can be obtained

from the Nth-order quadrature squeezing of the three-photon (four-photon) TJCM. For all
these cases we have derived the re-scaled squeezing factors, which can provide complete
information on the total atomic inversion. Also similar relations have been obtained for the
geometric atomic inversion.
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Appendix

In this appendix we derive the formula (25) by comparing the expression of the 〈â2N(T )〉 to
that of the atomic inversion (12). In the SIR the quantity 〈â2N(T )〉 for the dynamical state (3)
with l = m = 1 takes the form:

〈â2N(T )〉 = n̄N

∞∑
n=0

|Cn|2[ζ1(n) cos(T �n+2N) cos(T �n) + ζ2(n) cos(T �n+2N)

+ ζ3(n) cos(T �n) + ζ4(n) sin(T �n+2N) sin(T �n) + ζ5(n)], (A.1)

where the explicit forms of the coefficients ζj (n) can be easily derived. Here we give only the
explicit form of the ζ1(n) as

ζ1(n) = [(n + k)!(n + 2N + k)!]2 + n!(n + k)!(n + k + 2N)!(n + 2k + 2N)!

{[(n + k)!]2 + n!(n + 2k)!}{[(n + k + 2N)!]2 + (n + 2N)!(n + 2k + 2N)!} . (A.2)

Now we evaluate the asymptotic form for ζ1(n). This can be achieved by simplifying the
factorials in (A.2) using the SIR. For instance, the factorial (n + k)!, say, can be rewritten as

(n + k)! = n!nk

k∏
j=1

(
1 +

j

n

)
. (A.3)

For finite values of k and N the right-hand side of (A.3) reduces to n!nk . Applying these
procedures for all factorials in (A.2) leads to ζ1(n) � 1/2. Similarly one can prove that
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ζ2(n) = ζ3(n) = 0 and ζ4(n) = ζ5(n) = 1/2. Therefore, equation (A.1) can be simply written
as

〈â2N(T )〉 = n̄N

2
+

n̄N

2

∞∑
n=0

|Cn|2 cos[T (�n+2N − �n)]. (A.4)

The expression (A.4) can provide dynamical behaviour similar to that of (12) if the arguments
of the cosines in the two expressions are comparable. Thus we seek the proportionality
factor, µN , which can play this role. This factor, i.e. µN , can be obtained from the following
expression:

µN = �n+2N − �n√
2(2n + 3)

,

=
(n+2N+k)!
(n+2N)! − (n+k)!

n! + (n+2N+2k)!
(n+2N+k)! − (n+2k)!

(n+k)!
√

2(2n + 3)
[√

(n+2N+k)!
(n+2N)! + (n+2N+2k)!

(n+2N+k)! +
√

(n+k)!
n! + (n+2k)!

(n+k)!

] . (A.5)

The first two terms in the numerator of (A.5) can be modified as

(n + 2N + k)!

(n + 2N)!
− (n + k)!

n!
= 2Nknk−1 + nk−2(..) + · · · + n0(..). (A.6)

Similarly, the other two terms in the numerator of (A.5) can be treated. For denominator, one
has to use procedure as that applied to (A.3). Substituting all these results in (A.5) one obtains

µN � 1
4

[
4Nkn

k−3
2 + n

k−5
2 (..) + n

k−7
2 (..) + · · · ]. (A.7)

From (A.7) it is obvious that in the SIR the RCP involved in the
〈
σ z

T (T )
〉
k=1 can occur in

the quadrature squeezing of the multiphoton TJCM only when k = 3 and hence µN = 3N .
Similarly one can prove that the RCP in the

〈
σ z

T (T )
〉
k=2 can occur in the quadrature squeezing

of the multiphoton TJCM only when k = 4 with µN = 4N . Finally, the calculations given in
this appendix lead to the formula (25).
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